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Valence crystals have bulk stoichiometries that are electroneutral with respect to formal atomic 
valence, and structures in which cation sites are formed entirely by anions and vice versa. This 
description is shown to be equivalent to a set of stoichiometric and structural rules limiting local atomic 
configurations in valence crystals. Algebraic equivalents of these rules are used to derive a necessary 
mathematical link between bulk stoichiometry and local atomic arrangements in valence crystals. In 
the limit of no charge imbalances on anion sites, this link reduces to the electrostatic valence principle 
of Pauling. Numerical analysis shows that limits upon the coordination numbers of cations and anions 
severely restrict the number and type of local configurations that could ever be combined to form an 
electroneutral bulk stoichiometry, regardless of the valence of the anion or the magnitude of charge 
imbalances on anion sites. 0 1991 Academic Press, Inc. 

I. Introduction 

All representations of the bulk stoichiom- 
etry of a well-ordered crystal are equivalent 
within a factor of a rational number because 
they are derived from the frequency of ap- 
pearance of an atom or site in the crystal 
structure. Since a minimum representation 
of crystal structure, such a a unit cell, is a 
complete description of a well-ordered crys- 
tal, then in some sense crystal structure de- 
termines stoichiometric representations; for 

example, investigators can use high-quality 
X-ray diffraction data to estimate bulk stoi- 
chiometries of unknown materials. On the 
other hand, bulk stoichiometry generally 
does not limit crystal structure because 
while well-constrained rules proscribe local 
atomic arrangements in a crystal, no equiva- 
lent set proscribes stoichiometry. 

Empirically, however, one sees patterns 
linking aspects of crystal stoichiometry and 
structure. An interesting, if extremely sim- 
ple, observation is that crystal bulk stoichio- 
metries are often electroneutral with respect 
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cates. This “electroneutral condition” is 
taken as a basic rule governing aspects of 
structure in such crystals. If it is also re- 
quired that all cations are surrounded solely 
by anions and vice versa, one obtains a use- 
ful algebraic link between local atomic con- 
figurations and stoichiometry. 

This algebraic link is drawn from consid- 
eration of valence and coordination number 
alone, two of many factors determining the 
relative stabilities of crystal structures. We 
take no account of the magnitude of bonding 
interactions between atoms, interatomic 
separations, bond angles, or other metric 
properties of crystals. This method cannot 
be used to determine atomic positions in a 
unit cell, lattice energies, or any bulk ther- 
modynamic properties. On the other hand, 
with this approach one can calculate all pos- 
sible local atomic configurations consistent 
with a given electroneutral bulk stoichiome- 
try. Since this produces many more possibil- 
ities than those realized in nature, one has 
a tool with which to explore factors de- 
termining the stabilities of crystals. The 
reader will recognize the debt this approach 
owes to the classic study by Pauling (I), 
as well as more recent works by Baur (2), 
Brown, Shannon, and others (3-5), 
O’Keeffe and others (64, and Burdett and 
McLarnan (9), and the analysis of the sym- 
bolic content of stoichiometry of Hoppe 
w. 

We first develop the empirical arguments 
and rationalizations upon which this study 
is based and express them as three rules. 
The rules are cast as algebraic expressions 
and convoluted together to obtain a general 
expression explicitly linking stoichiometry 
and local atomic arrangements in crystals 
with electroneutral stoichiometries, re- 
ferred to as the Neutral Structural Crite- 
rion. The Neutral Structural Criterion is 
used to show the equivalence of cationcen- 
tric and anioncentric descriptions of crystal 
structure and that neither is a suficient de- 
scription, and also that the electrostatic va- 

lence principle of Pauling (1) is simply a 
limiting case of the more general condition. 
Last, structure and stoichiometry are ana- 
lyzed numerically for a single anion site to 
determine how yarious factors limit the local 
structures of electroneutral crystals. 

II. Formalism 

Simple representations of bulk stoichiom- 
etry often ignore distinctions between crys- 
tallographically distinct sites, especially 
when the same atom appears in several dif- 
ferent sites. We are less concerned with the 
identities of atoms per se than with the sites 
they occupy or form and so will take entries 
in a stoichiometric formula as sites. The 
stoichiometric coefficients of sites are pro- 
portional to their number in the unit cell and 
thus are rational numbers. Therefore, we 
lose no information by requiring that all sites 
in a formula unit be integrally represented. 
We say that the electroneutral condition is 
satisfied when the sum of valences of all 
atoms in a formula unit is zero. Thus any 
collection of atoms that is a rational number 
multiple of an electroneutral bulk stoichiom- 
etry must be electroneutral, regardless of 
the relationships between individual atoms. 
This mathematical convenience in no way 
restricts the actual types of bonding forces, 
the scale over which they act, or the scale 
over which electroneutrality is obtained. In- 
deed, instead of viewing stoichiometry as a 
consequence of valence-perhaps implying 
ionic bonding forces-one might view va- 
lence to be a consequence of stoichiometry, 
an interpretation paralleling the historic de- 
velopment of the concept of valence. 

This description of bulk electroneutrality 
tacitly assumes that a distinction can be 
made between positively charged cations 
and negatively charged anions, whether or 
not such a distinction has any physical sig- 
nificance. In fact, crystals with electroneu- 
tral stoichiometries tend to have cation co- 
ordination polyhedra formed entirely by 
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anions and vice versa. The whole number TABLE I 

representing the number of atoms of oppo- TYP~GRAPHYAND~YMBOLOGY 

site polarity surrounding a central atom in a 1 . 
site is referred to as the coordination num- 
ber of the site. When atoms of the same 
polarity are nearest neighbors, as in some 
chalcogenides or crystal structures based on 
cation packing (8), one usually does not find 
electroneutral stoichiometries, so these are 
excluded from consideration. This defini- 
tion of coordination number does not mean 
bonding interactions in crystals are solely 
between cations and anions-it does not ref- 
erence bonding interactions at all. 

AZ 

2 

m 

n 

n(K) 

A label signifying a unique cation site 
Integral stoichiometric coefficient of Ai 
A general site (cation or anion) 
The index for cation sites 
The index for anion sites 
The number of unique cation sites 
The number of unique anion sites 
The coordination number of (the atom 

in) site K 

Coordination number is an interesting 
structural parameter because it often re- 
mains nearly constant with variations in 
bond lengths and angles. This means actual 
geometric relationships between atoms can- 
not be obtained from coordination number 
alone. On the other hand, bond length and 
angles bear no necessary relationship to 
bulk stoichiometry, but there is a necessary 
and very important link between coordina- 
tion number and structure-there is a 1 : 1 
correspondence between changes in the co- 
ordination numbers of cations and anions. 
If an anion far from a certain cation is in- 
cluded in the coordination polyhedron of the 
cation, then the coordination numbers of 
both are increased. Each cation-anion bond 
implies an anion-cation bond, so the sum of 
the coordination numbers of all anion sites, 
each weighted by the appropriate stoichio- 
metric coefficient, must equal the weighted 
sum of the coordination numbers of all cat- 
ion sites. 

We arrive at three rules, taken as the de- 
fining properties of valence crystals: 

(Rl) It must be possible to distinguish be- 
tween cations and anions; 

(R2) The weighted sum of all cation va- 
lences exactly compensates the weighted 
sum of all anion valences; 

(R3) The weighted sum of all cation coor- 

N,(K’) 

X, 

2(K) 
Z,(K) 

5, 

WK) 

-(K) 
44, B) 

WV 

The number of times the atom in K’ 
appears around the atom in site K 
UN. (9)) 

A label signifying an unique anion site 
Integral stoichiometric coefficient of Xj 
The valence of atom K 
The site valence of K, or the sum of 

bond strengths of all atoms that form 
site K (see Eq. (12)) 

The number of bonds between the ai 
cations Ai and surrounding anions 
(see Eq. (5)) 

The number of bonds between the xj 
anions Xj and surrounding cations 
(see Eq. (5)) 

The charge imbalance on site K; the 
difference between the site valence 
of K and the valence of the atom 
occupying K (see Eq. (16)) 

The bond strength of K (see Eq. (6)) 
The number of solutions to Eq. (19) 

involving cations of valence Z(A) and 
Z(B) 

The number of solutions to Eq. (19) 
involving one or more cations of 
valence Z(A) and cations of any 
other valence (see Eq. (20)) 

dination numbers must equal the weighted 
sum of all anion coordination numbers. 

III. Algebraic Description 
of Valence Crystals 

Rl, R2, and R3 are cast as algebraic ex- 
pressions: the typography employed here 
and elsewhere in this study is summarized 
in Table I. From RI, valence crystal stoi- 
chiometries are written 
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Al,,A2,, . . . Am,,Xl,,X2,, 
. . . xn,,. (1) 

Cations and anions are referenced by the 
labels Ai and Xj, respectively, and Ui and Xj 
are their (integer) stoichiometric coeffi- 
cients; the index i applies solely to cations 
or cation sites and the index j to anions or 
anion sites. m and n are the total numbers 
of unique cation and anion sites, respec- 
tively; for now it is not necessary to adopt 
criteria specifying precisely what makes a 
site “unique” save that it is explicit in bulk 
stoichiometry. For R2, the electroneutral 
condition, we introduce an operator, Z(K), 
which returns the valence of the atom in 
site K: 

iz aJ(Ai) + ,$ xjZ(xj) = 0. (2) 

R3 is recast using an operator that returns 
the coordination number of K, n(K), 

lz uin(Ai) = i xjn(Xj). (3) 
j=l 

Equation (3) links bulk stoichiometric con- 
straints, the stoichiometric coefficients ai 
and xj, with structural constraints, the coor- 
dination numbers n(K) . 

Equations (2) and (3) are convolved to- 
gether as 

where 

(Yi = ain and sj = xjn(Xj). (5) 

(Y~ is equivalent to the number of bonds 
formed between all a, of the cations in sites 
Ai and surrounding anions, and sj the num- 
ber of bonds formed between all xj anions 
Xj and surrounding cations. Z(K) and n(K) 
are unique properties of the atom in site K 
and so can be combined into a new operator, 

(6) 

By analogy with Pauling (Z), a(K) is re- 
ferred to as the bond strength of the atom in 
site K. Substituting appropriate expressions 
for c+(K) into Eq. (4) yields 

Equation (7) states that the sum of all cation 
bond strengths exactly compensates the 
sum of all union bond strengths in a valence 
crystal. From Eq. (2), 

i$ aic(Ai) = ,z @(Ai> and 

,$ tju(xj) = i: xjz(xj)9 (8) 
j=l 

meaning sums of bond strengths taken over 
all bonds are exactly equivalent to sums of 
valences taken over all atoms in the stoi- 
chiometric formula (Brown (5) examines 
this statement in a somewhat different 
context). 

Bond strength “normalizes” the valence 
of an atom to the site it occupies, but still 
provides no information about the atoms 
that form the site. A more useful algorithm 
would assign all atoms to specific sites, fix- 
ing the relationships between each atom and 
all of its neighbors-one may think of this 
as essentially fixing the “composition” of a 
site. To this end, we introduce an operator, 
N,(K’), which returns the number of times 
the atom K’ appears in the coordination 
polyhedron of K. We can use N,(K’) to 
obtain the coordination number of K: 

J$ NAi(xj) = n(Ai) and 

l$ N&W = n(Xj). (9) 

Since each Ai-Xj bond requires an Xj-Ai 
bond, 
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aiN,, = xjNxj(Ai). 

With this operator, the sum of bond 
strengths of the anions that form site Ai is 

which when taken over all cation sites is 

We see in comparison with the relations in 
Eq. (8) that 

is= 1 j=l j=l 

and likewise for cations about anion sites 
that 

= 2 u,Z(Ai). (lob) 
i=l 

Substituting the leftmost expressions in 
Eqs. (lOa) and (lob) into Eq. (2) yields 

+ i Xj 2 N*(Ai)u(Ai) = 0. (11) 
j=l i=l 

Equation (11) intimately links bulk stoi- 
chiometric coefficients of atoms occupying 
sites with the numbers and types of atoms 
forming sites. It is obtained directly from 
RI, R2, and R3, and therefore is a funda- 
mental property of any valence crystal. We 
refer to it as the Neutral Structure Criterion. 

The frame of reference of the Neutral 
Structure Criterion is quite different from 
that of the electroneutral condition, Eq. (2). 
For example, in Eq. (2) the cation stoichio- 
metric coefficients Ui are multiplied by 
Z(Ai), resulting in a sum that is a positive 

integer. In Eq. (ll), however, the Ui are 
multiplied by a sum of negative rational 
numbers, but the resulting summation over 
all cation sites is a negative integer (Eq. 
(loa)). Because of this, each of the inner- 
most summations in Eq. (11) is much like a 
“charge” on a site, or a site valence, Z,(K), 
that counters the valence of the atom in the 
site: 

Z,(Ai) = i N,i(Xj)u(Xj) and 
j=l 

Z,(Xj) = 5 iV&Ai)u(Ai). (12) 
i=l 

The sign of site valence is always 
known-it is the opposite that of the atom 
occupying the site-but its magnitude is a 
property of the number and valences of 
atoms that form the site and is therefore 
a unique property of the crystal structure. 
Since site valence is a rational number, 
atomic valence need not be compensated by 
site valence. Comparison with Eqs. (10a) 
and (lob) yields the important equalities 

These show that site and atomic valence 
formalisms are equivalent. Site valence is a 
fundamental and necessary property of any 
valence crystal; however, it may not be the 
only operator that could satisfy the equali- 
ties in Eq. (13). For example, Brown and 
Shannon (4) cast bond strength as a function 
of empirically determined ionic radii and 
employ these to satisfy a relationship analo- 
gous to Eq. (11). Such approaches require 
metric constraints beyond the scope of the 
present model and are not considered 
further. 

The unusual reference frame of the Neu- 
tral Structure Criterion is best illustrated by 
an example, here the mineral forsterite 
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Mg,SiO, (II). Ignoring distinctions between 
the various crystallographic sites, Mg sites 
are formed by 6 oxygen (a(Mg) = + 2/6), 
Si sites by 4 oxygen (u(Si) = + 4/4), and 
oxygen sites by 3 Mg and 1 Si (o(0) = 
-2/3 + 1)): 

Z,(Mg) = &,(O)a(O) = 6( -2/4) = -3 

Z,(Si) = Nsi(O)Cr(O) = 4(-2/4) = -2 

Z,(O) = iVo(Mg)a(Mg) + No(Si)(+(Si) 
= 3( +2/6) + 1(4/4) = +2. 

possible local atomic configurations of a va- 
lence crystal, as certain properties unique 
to anion sites are explicitly part of the de- 
scription of cation sites, and vice versa. 
Consider, for example, algorithms derived 
from Eq. (10) for the stoichiometric coeffi- 
cients of cation and anion sites. From Eq. 
(7), the number of bonds between the ai cat- 
ions in site Ai and all anions is 

Substituting these into Eq. (ll), thus 

= 2(-3) + l(-2) + 4(+2) = 0, 

verifying the premise that forsterite is a va- 
lence crystal. If this calculation is performed 
for each crystallographically distinct Mg 
and 0 site the same result is obtained, but 
the complexity of the analysis increases. 

In the example of forsterite considered 
above, 

IV. Local Environments 
in Valence Crystals 

Equation (10) could be used to determine 
all local arrangements of cations and anions 
consistent with the bulk stoichiometry of 
any valence crystal, but this typically pro- 
duces a large number of possibilities for all 
but the simplest bulk stoichiometries. Note 
that each term in the summations in Eq. (10) 
refers to a distinct site, and only when sites 
are considered collectively does one impose 
the condition of electroneutrality. This sug- 
gests determining all possible local atomic 
arrangements and then combining sets of 
related solutions (containing, for example, 
the same set of cations and anions occu- 
pying the same set of sites) to determine 
whether or not an electroneutral bulk stoi- 
chiometry can result. 

An implicit consequence of Eq. (10) is 
that knowledge of the “compositions” of, 
say, all cation sites largely determines the 

~,n(Ai) = ~ ~jxjN,i(Ai); 
j=l 

a 

USi = 

a0 = 

(xdVo(MgN = W)(W) 

= 2, 

(xo~o@i>) = (l/4)(4)(1) 

= 1, 

= W4M2M) + (1X4)1 = 4 

(valence need not be considered because the 
bulk stoichiometry is electroneutral). We 
see that descriptions of cation sites and 
anion sites are mutually dependent; the dis- 
tinction between cations and anions in va- 
lence crystals is both necessary and real. 
Moreover, a cationcentric approach to va- 
lence crystal structure-i.e., considering 
cation coordination polyhedra alone-is no 
more descriptive or meaningful than an 
anioncentric approach. 

If the positions of all cations in a va- 
lence crystal are known, then everything 
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about the anion sites is known except the 
identities of the anions within them. If there 
are k distinguishable anions, this leaves at 
most k ! different distributions of anions over 
anion sites. In real crystals there tend to 
be fewer distinguishable anions than anion 
sites, so the number of unique configura- 
tions is still smaller. Only one type of anion 
(e.g., oxygen) is present in many valence 
crystals, so in these knowledge of the distri- 
butions of cations over the anion sites com- 
pletely determines the valence crystal 
structure. 

ZV.A. Individual Cation and Anion Sites 

From Eq. (1 l), local arrangements of cat- 
ions about anions must satisfy 

+ ~ XjZ(Xj> = 0. (15) 
j=l 

By definition (Eq. (12)), the innermost sum- 
mation in the left-hand term of Eq. (15) is 
the site valence of the anion site Xj. We 
have shown that Z,(Xj) need not exactly 
compensate Z(Xj). Therefore a description 
of the local environment of the atom in site 
K requires a new operator, 6(K), which re- 
turns the difference between Z,(K) and 
Z(K). For a single anion site 

i XjN,(Ai)c(Ai) + Z(m) = S(G). (16) 
j=l 

When S(Xj) 1 0 then Z,(Xj) overcompen- 
sates Z(Xj), and the anion is said to be ouer- 
bonded; when S(Xj) 5 0 then Z,(Xj) under- 
compensates Z(Xj), and the anion is 
underbonded. In the analogous relationship 
for cations, 

lz aiNAi(Xj)u(Xj) + Z(Ai) = %Ai); (17) 

negative values of 6(Ai) mean the cation is 
overbonded, and positive values mean the 

cation is underbonded. As the example of 
forsterite shows, it is quite possible that all 
anions might occupy charge-compensated 
sites while all cations occupy underbonded 
or overbonded sites, and vice versa. 

Finally, from application of the equalities 
in Eq. (13), 

J$ xjstxj) = O and 2 aiS = 0. 
i=l 

(18) 

Equation (18) requires the sum of charge 
imbalances over all cation sites and the sum 
over all anion sites to be exactly zero. Cat- 
ion or anion charge imbalances can only 
be compensated by charge imbalances of 
opposite sign on other cation or anion sites, 
respectively. This point is illustrated by 
the chain silicate mineral hedenbergite, 
CaFeSi,O, (12). Cation coordination num- 
bers are n(Ca) = 8, n(Fe) = 6, and n(Si) = 
4. There are three oxygen sites: 

O1 = 2Fe + 1Ca + 1Si: 
Z&01) = 2(i) + l(Q) + l(Q) = + lti 

0, = 1Fe + 1Ca + 1Si: 
Z&01) = l(8) + l(i) + l(i) = + l& 

0, = 2Ca + 2Si: 
Z,(Ol) = WJ + w = +2* 

,$ W”j) = i Lztoj) + zs(“j)l 
j=l 

= 3(-2) + [+l# + I& + 241 = 0. 

Although none of the oxygen atoms is 
charge compensated by its site valence, the 
sum of 6(Oj) taken over all distinct oxygen 
sites is zero; thus hedenbergite is a valence 
crystal. Equation (18) also applies to the 
cation sites: 

Ca = 2(0, + 0, + 20,): 
Z,(Ca) = 2[ -4 - 4 - 2($)] = -44 

Fe = 2(20, + 02): 
Z&Fe) = 2[ -2($ - 31 = - 33 
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2Si = 2(0, + O2 + 20,): 
Z,(Ca) = 2[ -% - % - 2(z)] = 2( - 2Q) 

=(2+2+2(4))+[-49-39-4Q]=O 

(notice that the magnitudes of charge imbal- 
ances on the oxygen sites are much smaller 
than those on the cation sites). The relations 
in Eq. (18) are general to any material satis- 
fying Rl, R2, and R3; for example, it must 
be satisfied in silicate glasses, although pos- 
sibly over many more atoms than in a simple 
crystal. 

1V.B. The Electrostatic Valence Principle 

In the special case that S(Xj) is zero, Eq. 
(17) is written 

i$ aiNAi(Xj)m(Xj) + Z(Ai) = 0. 

This is essentially the electrostatic valence 
principle of Pauling (1) expressed as an 
equality. We restate the principle in terms 
of the present model: in the most stable ua- 
lence crystals anion site valences tend to 
compensate anion valences. As seen above, 
this is not generally true for cation sites, 
suggesting the following extension: 

The most stable valence crystal struc- 
tures minimize charge imbalances on 
anion sites relative to alternative struc- 
tures, even at the expense of overbond- 
ing and underbonding cations. 

In this extension, the bonding requirements 
of anions are seen as a driving force underly- 
ing the most stable crystalline form of a 
given bulk stoichiometry. As with the elec- 
trostatic valence principle, one need not 
look far to find exceptions to this statement, 
exceptions which clearly point to factors be- 
yond simple electrostatics that affect the rel- 
ative stabilities of crystals. 

V. Parameters Limiting Valence 
Crystal Structures 

The summations in Eqs. (16) and (17) are 
bounded by geometric limits on cation and 
anion coordination numbers. Furthermore, 
the value of 6(K) for any particular cation 
or anion site has a special relationship to 
values of 6(K) for other cation/anion sites 
because, from Eq. (18), charge imbalances 
on all cation sites and on all anion sites must 
each sum to zero. Moreover, there is a prac- 
tical limit for values of 6(K), which for 
anions is Z(Xj) < S(Xj) < Z,(Xj). We now 
consider a numerical analysis of how these 
limits impact the number and types of local 
atomic configurations in valence crystals. 
This is performed using a variant of Eq. 
(16) for the valence crystal stoichiometry 
A,B,X,, where A and B are cations with 
unique valences and/or coordination num- 
bers, and X is an anion of fixed valence. 
The minimum and maximum coordination 
numbers of atom K, n,i,(K) and nmax(K), are 
such that 

n,i,(Ai) 5 i NAi(Xj) 5 n,,,(Ai) and 
j=l 

n,,(Xj> 5 f$ N%(Ai) 5 nmax(Xj). 
i=l 

We adopt fixed limits for the magnitude of 
charge imbalances on anions and represent 
these as G,,,(Xj)-for the present purposes 
these are empirical and therefore arbitrary. 
From Eq. (16) we require that 

We will further require that each anion 
site be formed by at least one each of cations 
A and B; hence the minimum anion coordi- 
nation number, nmin(X), is 2. Since S,,,(Xj) 
represents a range rather than a specific 
value, most combinations of cation valences 
Z(A) and Z(B) will produce several “accept- 
able” trial local configurations-the total 
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number of acceptable trial solutions is 
@(A, B). Variations in o(A, B) are examined 
as a function of Z(X); nmax(A), n,&B), and 
n,,(X); and S,,,(Xj). The appropriate form 
of Eq. (16) is 

~xWZ(A) + ~x(WW _ 6.x) 
n(A) n(B) 

+ Z(X) = 0 (19) 

(the subscript j is omitted because a single 
anion site is considered). 

This model produces variations in the 
number of trial solutions, w(A, B), with 
changes in the limiting constraints that are 
qualitatively the same as those in models 
involving more cation or anion sites. This 
might be inferred from the equalities in Eq. 
(13), which show that sums over site va- 
lences and atomic valences have the same 
magnitude. Unlike a sum of integral atomic 
valences, site valence is a sum of rational 
numbers, so increasing the number of terms 
in the summation produces relatively few 
additional solutions likely to satisfy the 
Neutral Structure Criterion (Eq. (11)). On 
the other hand, brute-force analysis of Eq. 
(19) yields many trial configurations that 
cannot be found in valence crystals. Thus, 
w(A, B) increases with the number of cat- 
ions surrounding an anion, but the number 
of realistic solutions does not increase 
strongly. 

This model is also useful because many 
valence crystals have only two cation sites 
with distinct coordination numbers or that 
are occupied by cations with distinct va- 
lences. This set includes valence crystals of 
the bulk stoichiometry A,B,C&, in which 
the cation C is surrounded by a fixed number 
0fXatoms (e.g., Si in low-pressure silicates, 
C in carbonates). The cation C makes a 
static contribution to anion site valence and 
reduces the sum of bond strengths required 
from cations A and B. In these cases, the 
effective valence of the anion, Z(C) + u(C), 

is as valid an expression of anion valence as 
Z(X) itself. 

Initial limits for cation and anion coordi- 
nation numbers and the value of S,,(Xj) 
are summarized in Table II. Cation valences 
range from + 1 to + 6 and anion valences 
are either - 1 or - 2. Cation coordination 
numbers are initially constrained to the 
range from 2 to 12, where the former is a 
minimum for a linearly repeating unit cell 
and the latter the coordination number of a 
hard sphere in a close-packed array. Anion 
coordination numbers must range from 2 to 
8, the former observed in low-pressure poly- 
morphs of SiO, , the latter close to the upper 
limit for oxygen in real crystals (8). To com- 
pare o(A, B) for anions of different va- 
lences, IS,,,(Xj)l 5 0.5, regardless of the 
valence of the anion. Several oxyanions of 
high-valence cations show spectacular ex- 
cursions from this range, such as interior 
oxygen atoms in the 12- and l&phospho- 
tungstate ions, PW,,O& and P,W,,O& (ZJ), 
which obviously indicate that forces other 
than electrostatics are important in bonding 
arrangements. Baur (2) has shown that even 
simple oxides or crystals of simple oxy- 
anions show values of 6(X) as great as 40% 
of the valence of oxygen. In short, “real” 
local configurations for - 1 anions are prob- 
ably well represented, but real solutions for 
- 2 anions are underrepresented. 

Table III shows solutions to Eq. (19) sub- 
ject to the limits n,i”(X) = 2, n,(X) = 6, 
n,,(A) = n,,(B) = 10, and 6,,,(X) = 0, 
for combinations of +2 cations arranged 
about a - 1 anion. Note that multiple solu- 
tions are obtained even though these limits 
are stricter than those used elsewhere in this 
analysis. Also, when Z(A) = Z(B) and n(A) 
= n(B) the sites are considered indistin- 
guishable and are counted only once. Last, 
some solutions produce cation sites with 
strikingly different coordination numbers. 
~(2, 2) for these conditions is just the total 
number of solutions in Table III, or 11. 
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TABLE II 

INITIAL LIMITS FOR CALCULATING LOCAL CONFIGURATIONS 

Range of cation valences 
Range of anion valences 
Minimum and maximum cation coordination numbers 
Minimum and maximum anion coordination numbers 
Range of charge imbalances on anion sites 

+1 sZ(A),Z(B) 5 +6 
Z(X) = -1 or -2 
n&A) = n,i,(B) = 2, nmax(A) = n,,(B) = 12 
nmin(X) = 2, nmax(X) = 8 
I4dX)l 5 0.5 

VI. Limiting Parameters and Local 
Atomic Arrangements 

Table IV shows the number of trial con- 
figurations, w(A, B) for - 1 and -2 anions 
subject to the initial limits (Table II). It is 
convenient to represent the total number of 
solutions involving cations of valence Z(A) 
with cations of all other valences as Cl(A): 

LR(A) = 2 w(A, b). 
b=+l 

(20) 

R(A) are shown at the bottom of each col- 
umn in Table IV. The distinction between 
cation sites A and B is arbitrary, so w(A, B) 
must equal w(B, A) (the latter are shown in 
parentheses for - 1 anions and are omitted 
in the remaining tables). This and the indis- 

TABLE III TABLE IV 

TRIAL CONFIGURATIONS, Z(A) = Z(B) = +2, w(A, B) FOR - 1 AND - 2 (ITALIC) ANIONS SUBJECT 

%n,,w) = 0 TO THE LIMITS IN TABLE II 

N,(A) n(A) N,(B) 09 n(X) 
Z(B) o(l, 8) 42, B) o(3. B) o(4, B) 4, m 46, 8) 

1 3 1 6 2 
1 4 1 4 2 
2 5 1 10 3 
2 6 1 6 3 
2 8 1 4 3 
2 8 2 8 4 
3 8 1 8 4 
3 9 1 6 4 
3 10 1 5 4 
3 10 2 10 5 
4 10 1 10 5 

Nore. o(2, 2) = 11. 

tinguishability of cations of the same va- 
lence explains low values of w(A, B) when 
Z(A) = Z(B). The total number of solutions 
for a cation of valence Z(A), Cl(A), de- 
creases steadily with increasing valence of 
the cation for - 1 anions, but shows a local 
maximum for solutions involving +2 cat- 
ions when the anion valence is - 2. 

The number of solutions for particular 
pairs of cations, o(A, B), decreases with 
increased valence of either cation for Z(A) # 
Z(B). When Z(A) is already large, increasing 
Z(B) drastically reduces the number of trial 
configurations; for example, there is a 20- 
fold decrease in 46, B) for - 1 anions as 
Z(B) increases from + 1 to + 6, and a lo- 
fold decrease in 46, B) for - 2 anions in the 
same sense. The range of cation coordina- 

+I 1072 1752 1190 845 627 465 
297 1004 1192 1111 951 833 

f2 ( 1752Y 499 649 431 305 218 
594 1221 1002 804 657 

+3 (1190) (649) I89 251 173 127 
475 755 SM 46X 

+4 (845) (431) (251) 80 III 78 
251 415 323 

+5 (627) (305) (173) (Ill) 39 53 
152 248 

+6 (465) (218) (127) (78) (53) 2,) 
9.3 

WA) 5951 3854 2579 1796 1308 961 
5388 5282 46% 3857 31.55 2622 

Note. &,(A, B) = 9174 and 13,431. 
’ o(A. B) = o(B. A); omitted in following tables. 
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1 2 3 4 5 6 

z(A) 

FIG. 1. Histogram of CL(A) as a function of Z(A) for arrangements of cations about - 1 anions (cross- 
hatched) and -2 anions (filled) calculated using the limits listed in Table II. 

tion numbers-and hence cation bond 
strengths-is bounded, so the “average” 
bond strength of a cation increases with its 
valence. This limits the number of high-va- 
lence cations that can be packed around an 
anion for any range constrained by S,,(Xj). 
This limitation is most pronounced for low- 
valence anions because high-valence cat- 
ions typically make substantial contribu- 
tions to anion site valence. 

The number of trial configurations is 
greatest when Z(A) and Z(B) are equal to or 
slightly greater than 12(X)1, e.g., ~(1, 2) for 
monovalent anions and ~(2, 3) for divalent 
anions. A site valence within the range de- 
fined by S,,,(Xj) requires several low-bond- 
strength cations, but the number of cations 
is limited by the maximum coordination 
number of the anion, n,,,(X). This combina- 
tion favors configurations involving cations 
with valences similar to or somewhat 
greater than that of the anion. 

Table IV illustrates the general conse- 
quences of increasing anion valence while 
all other limits are kept fixed: with the ex- 
ception of ~(1, 1) and ~(1, 2), the number 

of trial configurations increases with anion 
valance. The largest percentage increase in 
@(A, B) is for configurations involving at 
least one high-valence cation; for example, 
o( 1, 2) decreases by about 70%, while 
046, 6) increases 500%. This is more clearly 
seen in Fig. 1, a histogram of the total num- 
ber of trial configurations for a cation of 
valence Z(A), a(A), plotted as a function of 
Z(A) for anions of valence - 1 and - 2. Q(A) 
for - 1 anions clearly decrease more rapidly 
with increasing Z(A) than those for -2 
anions. n(l) actually decreases with in- 
creased anion valence, meaning this trend 
is due entirely to an increase in the number 
of trial configurations involving at least one 
cation of valence +2 or greater. The high 
site valences of - 2 anions permit a larger 
number of cations of any valence to take 
part in the site, and thus the number and 
types of solutions involving high-valence 
cations increases for any fixed range of 
anion charge imbalances. 

This is of practical importance to 
A,B,C,X, crystals in which all anions are 
bonded to C, as in the CO:- anion. The 
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n(A) 3ooO 

I 2 3 4 5 6 

Z(A) 

FIG. 2. Histogram of O(A) as a function of Z(A) for arrangements of cations about - 1 anions (cross- 
hatched) and - 2 anions (filled) calculated using the limits listed in Table II, save that n,,(X) is reduced 
from 8 to 6. 

actual number of solutions to the Neutral 
Structure Criterion will be the same whether 
one treats anion valence as Z(X) or as Z(X) 
+ o(C)-in the case of the carbonate anion, 
for example, whether oxygen is treated as 
02- or (OC,,J 5’4+. At the same time, there 
are far fewer trial configurations for the re- 
duced effective anion valence and no other 
configurations will be valid solutions to the 
Neutral Structure Criterion. In summary, 
the number of trial configurations decreases 
strongly with cation valence, but increases 
strongly with anion valence. Reducing anion 
valence with a “central” cation greatly re- 
duces the number of trial configurations that 
might satisfy the Neutral Structure Cri- 
terion. 

VZ.A. Decreasing Anion 
Coordination Number 

Table V shows the number of trial con- 
figurations, o(A, B), for a - 1 anion subject 
to the same limits as those in Table IV save 
that the maximum coordination number of 
the anion, nmax(X), is reduced from 8 to 6. 

This strongly reduces w(A, B) for + 1 and 
+2 cations, but o(A, B) for configurations 
involving + 4, + 5, and + 6 cations are un- 
changed. Figure 2 compares the number of 
all solutions for cations of valence Z(A), 
a(A), for - 1 and - 2 anions when n,,,(X) 
= 6. Increasing anion valence skews the 
maximum fin(A) toward higher values of 
Z(A), showing that there are few configura- 
tions involving one or more high-valence 
cations in which the coordination number of 
the anion approaches 6 or more. 

The decrease in w(A, B) for low-valence 

TABLE V 
w(A, B) FOR - 1 ANIONS, 2 5 n(X) 5 6 

Z(B) 4, B) 42, B) ~(3, B) ~(4, B) 4, B) 46, B) 

+I 594 1176 922 697 531 403 
f2 422 618 421 302 217 
f3 189 2.51 173 127 
+4 80 111 78 
+5 39 53 
+6 20 
WA) 4323 31.56 2280 1638 1209 898 

Note. WA, B) = 7424 
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TABLE VI 

o(A, B) FOR - 1 ANIONS, 2 5 n(A), n(E) 5 9 

Z(B) 41, B) 4-T m o(3, m OJ(4, B) 045, B) 45, B) 

+I 513 672 403 264 177 120 

+2 147 179 Ill 72 47 

+3 51 61 38 25 

f4 20 21 14 

f5 8 9 

t6 3 

WA) 2149 1228 757 491 325 218 

Note. Lo(A, B) = 2955. 

cations with decreasing n,,(X) results 
from the elimination of trial configurations 
involving low-bond-strength cations (i.e., 
low valence and high coordination num- 
ber), particularly those in which the anion 
is overbonded. In a real system, then, 
n,,(X) imposes a de facto practical limit 
on q,,,(A) or nmax (B) when A or B is 
a low-valence cation. As anion valence 
increases the effect of this limit becomes 
more pronounced: for example, approxi- 
mately 20% of the original local configura- 
tions for - 1 anions are eliminated, but 
approximately 33% of the original configu- 
rations for -2 anions are eliminated. In 
both cases, most configurations lost in- 
clude at least one + 1 or + 2 cation. 

VZ.B. Decreasing Cation 
Coordination Number 

Table VI shows the number of trial solu- 
tions, o(A, B), for - 1 anions subject to the 
same limits as those in Table IV, save that 
the maximum coordination numbers of the 
cations are reduced from 12 to 9. This drasti- 
cally decreases w(A, B) for any combination 
of Z(A) and Z(B), reducing the total number 
of trial configurations from 9174 to 2955. 
The percentage decrease in configurations 
involving at least one high-valence cation 
is disproportionately large; for example, 
o( 1,l) decreases by approximately 50%, but 
~(6, 6) decreases from 20 to 3, or by 85%. 
Reducing n&A) and n,,(B) also strongly 

affects configurations around -2 anions. 
This is shown in Fig. 3, where a(A) for - 1 
and - 2 anions are compared. The decrease 
in the number of trial configurations for - 2 
anions is less pronounced than for - 1 
anions because configurations obtained for 
- 2 anions involve fewer low-bond-strength 
cations. As observed for - 1 anions, how- 
ever, configurations involving high-valence 
cations are more strongly affected than 
those involving low-valence cations. In real 
crystals, cation coordination number tends 
to decrease with increasing valence and so 
a more realistic analysis would force maxi- 
mum cation coordination numbers to de- 
crease with increasing Z(A) and Z(B)-this 
is treated below. We see here that the maxi- 
mum coordination numbers of cations 
strongly affect the number of possible ar- 
rangements of cations about anion sites in 
valence crystals, but especially those in- 
volving high-valence cations. 

VZ.C. Limiting Charge-Zmbalances 
on Anions 

As might be expected, the number of trial 
configurations varies directly with the range 
of charge imbalances permitted on anions, 
(S,,,(Xj)l. This is illustrated in Fig. 4, a plot 
of the total number of trial configurations 
for cations of any valence around - 1 and 
-2 anions as 1t!&,,(Xj)l decreases from 0.5 
to 0.0 (the curves are spline fits and only 
approximate interpolations). The total num- 
ber of trial configurations decreases strongly 
with IS,,(Xj)l and the slope steepens with 
increasing anion valence. Table VII shows 
w(A, B) for - 1 and - 2 anions in the ex- 
treme limit that S,,,(Xj) = 0, with all other 
limits as in Table IV. This is a large and 
important class of valence crystals, so it is 
encouraging that so few trial configurations 
remain. When anion site valences exactly 
compensate anion valences, trial configura- 
tions for valence crystals reduce to a small 
set. 

From Table VII one also sees that 
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FIG. 3. Histogram of Cl(A) as a function of Z(A) for arrangements of cations about - 1 anions (cross- 
hatched) and -2 anions (filled) calculated using the limits listed in Table II, save that nmax(A) and 
n,,(E) are reduced from 12 to 9. 

w(A, B) do not necessarily follow simple 
generalizations made above when S,,(Xj) 
= 0; for example, in several cases ~(5, B) 
are less than ~(6, B), and the total number 
of solutions involving +5 cations, n(5), is 
less than a(6). This is an interesting conse- 
quence of actual values of bond strength. 
For the most part all trial configurations in- 
volving + 5 cations require either that n(A) 
= n(B) or that n(B) is an integral multiple 
of n(A). Since n,,(A) = nmax(B) = 12, this 
severely restricts the number of trial con- 
figurations involving at least one + 5 cation. 
Broadly speaking, then, this effect results 
from the fact that 5 is a prime number. A 
similar effect results when solutions are ex- 
amined in terms of the coordination num- 
bers of one or both of the cations-a local 
minimum in the number of solutions appears 
at n(A) = 7. When one cation has a coordi- 
nation number of 7 all others must as well if 
an electroneutral anion site is to be formed. 

This points toward a fundamental princi- 
ple underlying electroneutral local configu- 
rations: a sum of rational numbers must ex- 

actly equal a particular rational number, the 
real or effective valence of an anion. This is 
most important in cases when the effective 
valence of an anion is reduced by a central 
cation with a fixed coordination number. As 
an example, the effective valence of oxygen 
in the carbonate anion is - 3, so carbonates 
with electroneutral anion sites are generally 
obtained only when the cation coordination 
numbers are integral multiples of 3, and indi- 
vidual bond strengths must be no greater 
than 3. This virtually excludes any possibil- 
ity of forming a carbonate valence crystal 
with + 4, + 5, or + 6 cations without placing 
these cations in sites with extremely high 
coordination numbers. Similarly, sulfates 
tend to form electroneutral anion sites with 
cations whose coordination numbers are in- 
tegral multiples of 2 because the effective 
valence of oxygen in the sulfate anion is - t. 

VZ.D. Solutions for Underbonded Anions 

From above, each overbonded local con- 
figuration in a valence crystal has one or 
more underbonded counterparts, and in this 



144 ELLISON AND NAVROTSKY 

FIG. 4. Variation in the total number of solutions obtained for - 1 (open) and - 2 anions (filled) subject FIG. 4. Variation in the total number of solutions obtained for - 1 (open) and - 2 anions (filled) subject 
to the limits listed in Table II, save that 6,,(X) decreases from 0.5 to 0.0. to the limits listed in Table II, save that 6,,(X) decreases from 0.5 to 0.0. 

model the counterpart must be formed by a 
different configuration of the same cations 
(or more accurately cation sites) A and B. 
Because of the initial constraint that the 
maximum cation coordination number is 
greater than the maximum anion coordina- 
tion number, there are more overbonded 
trial configurations than underbonded and 
electroneutral trial configurations com- 

TABLE VII 

w(A, B) FOR - 1 AND - 2 (ITALIC) ANIONS, 
6,(X) = 0 

bined. As a result, many trial configurations 
for overbonded anion sites have no comple- 
mentary underbonded counterparts and 
cannot be used to produce crystals with 
electroneutral bulk stoichiometries. 

Table VIII shows w(A, B) for - 1 and - 2 
anions subject to the limits of Table IV save 
that -0.5 I 6(X) s 0.0 (thus including elec- 
troneutral solutions). Fewer than half of the 

TABLE VIII 
do, B) FOR - 1 AND - 2 (ITALIC) ANIONS, 

-0.5 5 6(X) 5 0 

Z(B) 4, B) d2, B) ~(3, B) ~(4, B) 45, B) o(6, 8) Z(B) 4. B) ~(2, B) o(3, B) ~(4, B) 45, B) 46, 8) 

+1 42 61 41 28 16 17 
23 57 72 49 43 42 

+2 20 23 14 8 8 
42 68 67 33 41 

+3 7 9 4 4 
28 35 31 23 

+4 3 2 3 
20 IS 23 

f5 I 2 
4 12 

f6 1 
7 

WA) 211 140 88 59 33 35 
286 308 257 209 138 148 

+1 699 
211 

c2 

+3 

806 473 
653 730 
172 205 
378 672 

56 
222 

+4 

308 
605 
127 
510 

67 
330 

20 
I12 

+5 

+6 

Q(A) 2622 1438 864 557 
3142 2911 2408 1871 

201 135 
513 430 

77 51 
385 313 

39 24 
257 197 

22 13 
172 142 

7 5 
64 103 

39 
351 229 

1490 1224 

Note. Eo(A, B) = 320 and 735. Note. WA, 8) = 3508 and 7034. 
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FIG. 5. Histogram of O(A) as a function of Z(A) for arrangements of cations about - 1 anions (cross- 
hatched) and - 2 anions (filled) calculated using the limits listed in Table II, save that - 0.5 5 6(X) 5 
0.0. 

initial trial configurations for - 1 anions re- 
main. Most strongly affected are combina- 
tions involving at least one high-valence cat- 
ion; for example, ~(6, 6) decreases from 20 
to 1. The total numbers of solutions involv- 
ing cations of valence Z(A), Q(A), around 
- 1 and - 2 anions are compared in Fig. 5. 
Values of a(A) are uniformly greater for - 2 
anions than for - 1 anions. Physically, this 
suggests that deviations from strict local 
electroneutrality will be more common in 
crystals in which Z(X) is relatively large. 
Conversely, in A,B,C,X, crystals in which 
the effective valence of X is reduced by the 
central cation C one expects local atomic 
configurations around X to be nearly elec- 
troneutral. 

VI.E. Realistic Limits on Cation 
Coordination Numbers 

The range of cation coordination num- 
bers considered above is physically unreal- 
istic. We examine the consequences of 
forcing the maximum coordination number 
of cations to decrease with increasing cat- 

ion valence for configurations in which 
-0.5 I 6(X) 5 0.0 to obtain a somewhat 
better picture of what combinations of cat- 
ions can form crystals with electroneutral 
bulk stoichiometries. The number of un- 
derbonded and electroneutral trial configu- 
rations, w(A, B), for - 1 and - 2 anions 
under this limitation is compiled in Table 
IX (values for the maximum coordination 
numbers of cations are indicated in the 
table). The minimum cation coordination 
number is now 4, but minimum and maxi- 
mum anion coordination numbers are 2 
and 8, as before. 

More than 50% of the solutions for - 1 
anions and more than 70% of the solutions 
for - 2 anions permitted in Table VIII are 
excluded. As might be expected, configu- 
rations involving one or more high-valence 
cations are most strongly affected. Indeed, 
solutions involving one or more + 5 or + 6 
cations are all but eliminated, and the bulk 
of the configurations referenced in Table 
IX involve + 1 or + 2 cations in combina- 
tion with cations of other valences. As 
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FIG. 6. Histogram of Cl(A) as a function of Z(A) for arrangements of cations about - 1 anions (cross- 
hatched) and - 2 anions (filled) calculated using the limits listed in Table IX. 

shown above, more realistic limits on the 
maximum anion coordination number will 
eliminate many of the latter as well. If the 
limit 6(X) is exactly zero, most of these 
trial configurations are eliminated. 

TABLE IX 

o(A, B) FOR - 1 AND -2 (ITALIC) ANIONS, 
-0.5 6(X) 5 0, VARIABLE nmax(A, B) 

Z(E) 43 B) 42, B) o(3, B) o(4, E) "(5, 8) o(6, E) 

%,,,(A) 12 10 9 9 7 7 

fl 603 495 228 133 2s 6 

67 405 296 234 149 127 

+2 72 65 33 4 0 

199 240 I72 70 55 

c3 13 12 0 0 
55 84 34 27 

+4 3 0 0 
29 25 20 

+5 0 0 
6 7 

f6 0 
3 

WA) 1490 669 318 181 29 6 
1278 1141 736 564 291 239 

Note. %(A, E) = 1692 and 2304 

VII. Conclusions 

Because the Neutral Structure Criterion 
is a sum of local atomic configurations, con- 
sideration of inherent limits upon local 
atomic configurations-the minimum and 
maximum coordination numbers of cations 
and anions and the magnitude of charge im- 
balances allowed on anion (or cation) 
sites-points to restrictions upon the com- 
binations of cations and anions likely to 
form valence crystals. Analysis of limits for 
a simple two-cation site model leads to the 
following generalizations: 

(1) The largest number of trial configura- 
tions is generated for combinations of cat- 
ions and anions with valences of similar 
magnitudes. 

(2) Higher anion valences allow more trial 
configurations for cations with valences 
similar to, or greater than, those of the 
anion. 

(3) Reduction of an anion’s effective va- 
lence by a cation of fixed bond strength lim- 
its the number of plausible trial configura- 
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tions to those calculated for the reduced 
effective valence. 

(4) The value of the maximum coordina- 
tion number of an anion severely limits the 
number of trial configurations involving at 
least one low-valence cation, particularly 
when its valence is less than that of the 
anion. 

(5) The value of the maximum cation coor- 
dination number severely limits the number 
of trial configurations for combinations of 
cations of any valence, but especially for 
those including at least one high-valence 
cation. 

(6) The maximum allowed charge imbal- 
ance on an anion site severely restricts the 
number of trial configurations for combina- 
tions of cations of any valence, especially 
for those involving at least one high-valence 
cation. 

(7) When the charge imbalance on an 
anion site is exactly zero, the number and 
types of local atomic configurations may be 
determined largely by the valence and/or 
coordination numbers of individual cations. 

(8) The number of underbonded and elec- 
troneutral anion trial configurations permit- 
ted by a fixed value 6,,,(X) is smaller than 
the number of overbonded anion trial con- 
figurations. 

(9) Realistic limits on the coordination 
numbers of cations eliminates many trial 
configurations for any value of 6(X). 

Aside from the numerical results, the 
most important conclusions from this analy- 
sis are: (1) the sum of all cation bond 
strengths exactly compensates the sum of 
all anion valences, and the sum of all anion 
bond strengths exactly compensate the sum 
of all cation valences; (2) the reference 
frame of atoms occupying sites and the ref- 
erence frame of the atoms forming sites are 
entirely equivalent; and (3) charge imbal- 
ances on anion sites must be compensated 
elsewhere on other anion sites, and likewise 

for cation sites. When charge imbalances on 
anion sites are exactly zero, one obtains the 
electrostatic valence principle of Pauling 
(I), expressed as an equality. 

Last, it is interesting that one may de- 
scribe a set of stoichiometric and structural 
rules reducing possible local atomic config- 
urations to a finite set: a fixed electroneutral 
bulk stoichiometry has available to it only a 
discrete set of possible local atomic config- 
urations. These may be obtained analyti- 
cally without regard to bond angles, bond 
lengths, or the exact nature of bonding inter- 
actions in valence crystals. 

Appendix 

Numerical analyses of local anion coordi- 
nation environments were performed using 
the program XTAL.PAS. To its favor a well- 
written Pascal program is largely self-docu- 
menting, but to its disfavor there is weak 
conformance to standards in Pascal compil- 
ers. XTAL.PAS is entirely compatible with 
the ANSI standard except that IEEE float- 
ing-point variable type extended was used 
for certain calculations-this variable type 
is not available on all Pascal compilers. Cop- 
ies of the source code are available from 
AJGE. 

The user inputs a single cation valence 
Z(A), a range of valences for cation B, 
ranges of cation coordination numbers, a 
single anion valence (not necessarily an inte- 
ger), a range of anion coordination numbers, 
and upper and lower limits for anion charge 
imbalances. Z(B), N(A), N(B), n(A), and 
n(B) are stepped between these limits and 
are used to solve Eq. (19). The value ob- 
tained is compared with the range of charge 
imbalances input by the user. Acceptable 
answers are written to an ASCII file as Z(A), 
Z(B), n(A), n(B), N(A), N(B), and the sum 
of cation bond strengths for each solution 
(the ASCII files were converted to dBase II 
file format for analysis). 
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The limiting parameters give (12 - l)* 
combinations of cation coordination 
numbers, Cz or 21 arrangements of cations 
that do not exceed the limits of 2 and 8 for 
anion coordination numbers, and six possi- 
ble valences for B. The program must there- 
fore sort through more than 15,000 possibili- 
ties. Most of these are eliminated, however, 
by using the user-input charge-imbalance 
limits to set conservative upper and lower 
bounds for n(B) in the innermost loop. As a 
result, the program takes only a few seconds 
to run on an iAP x 86-based computer. 
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